

1.2-A HIGH POWER WHITE LED DRIVER 2-MHz SYNCHRONOUS BOOST CONVERTER WITH I²C COMPATIBLE INTERFACE

FEATURES

- Four Operational Modes
 - Torch and Flash up to I_{LED} = 1200 mA
 - Voltage-Regulated Boost Converter: 4.5/5.0/5.25 V
 - Shutdown: 0.3 μA (typ)
- Total Solution Circuit Area < 25 mm²
- Up to 96% Efficiency
- I²C-Compatible Interface up to 400 kbps
- Integrated LED Turn-On Safety Timer
- Zero Latency TX-Masking Input (TPS61050)
- Hardware Voltage Mode Selection Input (TPS61052)
- Integrated ADC for LED V_F Monitoring
- Integrated Low Light Dimming Mode
- LED Disconnect During Shutdown
- Open/Shorted LED Protection
- Over-Temperature Protection
- Available in a 12-Pin NanoFree™ (CSP) and 10-Pin QFN Packaging

APPLICATIONS

- Camera White LED Torch/Flash for Cell Phones, Smart-Phones and PDAs
- Audio Amplifier Power Supply

DESCRIPTION

The TPS6105x device is based on a high-frequency synchronous-boost topology with constant current sink to drive single white LEDs. The device uses an inductive fixed-frequency PWM control scheme using small external components, minimizing input ripple current.

The 2-MHz switching frequency allows the use of small and low profile $2.2-\mu$ H inductors. To optimize overall efficiency, the device operates with only a 250 mV LED feedback voltage.

The TPS6105x device not only operates as a regulated current source, but also as a standard voltage-boost regulator. This additional operating mode can be useful to supply other high-power devices in the system, such as a hands-free audio power amplifier, or any other component requiring a supply voltage higher than the battery voltage (refer to TPS61052).

For highest flexibility, the LED current or the desired output voltage can be programmed via an I²C compatible interface. To simplify flash synchronization with the camera module, the device offers a trigger pin (FLASH_SYNC) for fast LED turn-on time.

When the TPS6105x is not in use, it can be put into shutdown mode via the I²C-compatible interface, reducing the input current to 0.3 μ A (typ). During shutdown, the LED pin is high impedance to avoid leakage current through the LED.

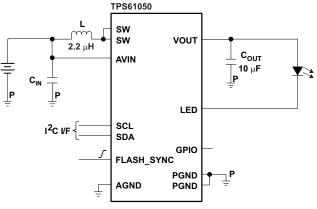


Figure 1. Typical Application

4.7 mm

Figure 2. Typical PC-Board Layout

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoFree, PowerPAD are trademarks of Texas Instruments.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

T _A PART	NUMBER ⁽¹⁾	SAFETY TIMER MAXIMUM DURATION	PACKAGE MARKING	PACKAGE
	TPS61050YZG	1.02 s	61050	CSP-12
−40°C to 85°C	TPS61050DRC	1.02 s	BRV	QFN-10
-40°C 10 85°C	TPS61052YZG	1.02 s	61052	CSP-12
	TPS61052DRC	1.02 s	BRW	QFN-10

(1) The YZG package is available in tape and reel. Add R suffix (TPS6105xYZGR, TPS6105xDRCR) to order quantities of 3000 parts. Add T suffix (TPS6105xYZGT, TPS6105xDRCT) to order quantities of 250 parts.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		TPS6105X	UNIT
	Voltage range on AVIN, VOUT, SW, LED (2)	-0.3 to 7	V
	Voltage range on SCL, SDA, FLASH_SYNC, GPIO, ENVM ⁽²⁾	-0.3 to 7	V
	Input current on GPIO	25	mA
T _A	Operating ambient temperature range ⁽³⁾	-40 to 85	°C
T _{J (MAX)}	Maximum operating junction temperature	150	°C
T _{stg}	Storage temperature range	-65 to 150	°C
	Human body model	2	kV
ESD rating ⁽⁴⁾	Charge device model	1	kV
	Machine model	200	V

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values are with respect to network ground terminal. (2)

(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature ($T_{A(max)}$) is dependent on the maximum operating junction temperature ($T_{J(max)}$), the maximum power dissipation of the device in the application ($P_{D(max)}$), and the junction-to-ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A(max)} = T_{J(max)} - (\theta_{JA} \times P_{D(max)})$. The human body model is a 100-pF capacitor discharged through a 1.5-k Ω resistor into each pin. The machine model is a 200-pF

(4) capacitor discharged directly into each pin.

DISSIPATION RATINGS

PACKAGE	THERMAL RES	SISTANCE ⁽¹⁾⁽²⁾	POWER RATING T _A = 25°C	DERATING FACTOR ABOVE ⁽¹⁾⁽²⁾ $T_A = 25^{\circ}C$
YZG	$\theta_{JA} = 89^{\circ}C/W$	θ_{JB} = 35°C/W	1.1 W	12 mW/°C
DRC	θ_{JA} = 49°C/W	$\theta_{\rm JC}$ = 3.2°C/W	2.4 W	20 mW/°C

(1) Measured with high-K board.

Maximum power dissipation is a function of T_{J(max)}, θ_{JA} and T_A. The maximum allowable power dissipation at any allowable ambient (2)temperature is $P_D = (T_{J(max)} - T_A) / \theta_{JA}$.

ELECTRICAL CHARACTERISTICS

Unless otherwise noted the specification applies for V_{IN} = 3.6 V over an operating junction temp. of $-40^{\circ}C \le T_J \le 125^{\circ}C$. Typical values are for $T_A = 25^{\circ}C$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLI	CURRENT		· ·				
. ,	Input voltage range		2.5		6.0	V	
V _{IN}	Minimum input voltage for start-up	MODE_CTRL[1:0] = 11, OV[1:0] = 01, R _L = 10 Ω			2.5	V	
lq	Operating quiescent current into AVIN	MODE_CTRL[1:0] = 01, I _{LED} = 0 mA		8.5		mA	
		$\begin{array}{l} MODE_CTRL[1:0] = 00, \ OV[1:0] \neq 11 \\ - 40^{\circ}C \leq T_{J} \leq 85^{\circ}C \end{array}$		0.3	3.0	μΑ	
I _{SD}	Shutdown current into AVIN	$\begin{array}{l} MODE_CTRL[1:0] = 00, \ OV[1:0] = 11 \\ - \ 40^{\circ}C \leq T_J \leq 85^{\circ}C \end{array}$		140		μΑ	
V _{UVLO}	Undervoltage lockout threshold	V _{IN} falling		2.3	2.4	V	
OUTPU	Г						
		Current regulator mode	V _{IN}		5.5		
V _{OUT}	Output voltage range	Voltage regulator mode	4.5		5.25	V	
	OVP Output overvoltage protection	V _{OUT} rising	5.7	6.0	6.25	V	
OVP	Output overvoltage protection hysterisis			0.15		V	
D	Minimum duty cycle			7.5%			
	LED current accuracy ⁽¹⁾	$0.25 \text{ V} \le \text{V}_{\text{LED}} \le 2.0 \text{ V},$ 50 mA $\le \text{I}_{\text{LED}} \le 250 \text{ mA}, \text{ T}_{\text{J}} = 50^{\circ}\text{C}$	-15%		15%		
	LED current accuracy()	$\begin{array}{l} 0.25 \ V \leq V_{LED} \leq 2.0 \ V, \\ 200 \ mA \leq I_{LED} \leq 1200 \ mA, \ T_{J} = 50^{\circ}C \end{array}$	-12%		12%		
	LED current temperature coefficient			0.08		%/°C	
	DC output voltage accuracy	2.5 V \leq V _{IN} \leq 0.9 V _{OUT} , PWM operation	-3%		3%		
V _{LED}	LED sense voltage	I _{LED} = 1200 mA		250		mV	
	LED input leakage current	$V_{LED} = V_{OUT} = 5 \text{ V}, -40^{\circ}\text{C} \leq T_J \leq 85^{\circ}\text{C}$		0.1	1	μΑ	
POWER	SWITCH						
	Switch MOSFET on-resistance	N N 200V		80			
DS(on)	Rectifier MOSFET on-resistance	$V_{OUT} = V_{GS} = 3.6 \text{ V}$		80		mΩ	
	Switch MOSFET leakage			0.1	1	۸	
Ikg(SW)	Rectifier MOSFET leakage	$V_{DS} = 6.0 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 85^{\circ}\text{C}$		0.1	1	μA	
		$2.5 \text{ V} \le \text{V}_{\text{IN}} \le 6.0 \text{ V}$, ILIM bits = 00	850	1000	1150		
l _{lim}	Switch current limit	: limit 2.5 V \leq V _{IN} \leq 6.0 V, ILIM bits = 01, 10 ⁽¹⁾ 1275		1500	1725	mA	
		$2.5 \text{ V} \le \text{V}_{\text{IN}} \le 6.0 \text{ V}$, ILIM bits = 11 ⁽¹⁾	1700	2000	2300		
	Thermal shutdown ⁽¹⁾		140	160		°C	
	Thermal shutdown hysteresis (1)			20		°C	
OSCILL						-	
f _{sw}	Oscillator frequency		1.8	2.0	2.2	MHz	
ADC			1.0	2.0	2.2	101112	
AD0	Resolution		3			Bits	
	Total error ⁽¹⁾	$V_{LED} = 0.25$ V, assured monotonic by design		±0.25	±1	LSE	
		VLED – 0.23 V, assured monotonic by design		±0.25	±1	LOL	
	CL, GPIO, ENVM, FLASH_SYNC		1.0			V	
V _(IH)	High-level input voltage		1.2		0.4	V	
V _(IL)	Low-level input voltage	L = 9 mA			0.4	v	
V _(OL)	Low-level output voltage (SDA)	$I_{OL} = 8 \text{ mA}$			0.3	V	
	Low-level output voltage (GPIO)	DIR = 1, I_{OL} = 8 mA	_	0.01	0.3		
I _(LKG)	Logic input leakage current	Input connected to V_{IN} or GND, $-40^{\circ}C \le T_J \le 85^{\circ}C$		0.01	0.1	μA	
	GPIO pull-down resistance	DIR = 0, GPIO ≤ 0.4 V (TPS61050)		400		kΩ	
	ENVM pull-down resitance	ENVM ≤ 0.4 V (TPS61052)		400		kΩ	

(1) Assured by design. Not tested in production.

ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise noted the specification applies for V_{IN} = 3.6 V over an operating junction temp. of $-40^{\circ}C \le T_J \le 125^{\circ}C$. Typical values are for $T_A = 25^{\circ}C$.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TIMING					
	From shutdown into torch mode $I_{LED} = 75 \text{ mA}$		1.2		ms
Start-up time	From shutdown into voltage mode via ENVM $I_{OUT} = 0 \text{ mA}$		650		μs
LED current settling time ⁽²⁾ triggered by rising edge on FLASH_SYNC	MODE_CTRL[1:0] = 10, I _{LED} = from 0 mA to 900 mA		400		μs
LED current settling time ⁽²⁾ triggered by TX mask	MODE_CTRL[1:0] = 10, I _{LED} = 900 mA to 150 mA		20		μs

(2) Settling time to $\pm 15\%$ of the target value

I²C INTERFACE TIMING CHARACTERISTICS⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
4		Standard mode			100	kHz	
f _{SCL}	SCL clock frequency	Fast mode			400	KΠZ	
		Standard mode	4.7				
t _{BUF}	Bus free time between a STOP and START condition	Fast mode	1.3			μs	
	Lold time (repeated) START condition	Standard mode	4.0			μs	
t _{HD} ; t _{STA}	Hold time (repeated) START condition	Fast mode	600			ns	
	LOW pariad of the SCL clask	Standard mode	4.7				
t _{LOW}	LOW period of the SCL clock	Fast mode	1.3			μs	
	LUCL period of the SCL clock	Standard mode	4.0			μs	
t _{HIGH}	HIGH period of the SCL clock	Fast mode	600			ns	
	Sotup time for a repeated START condition	Standard mode	4.7			μs	
t _{SU} ; t _{STA}	Setup time for a repeated START condition	Fast mode	600			ns	
	Data actus tima	Standard mode	250			20	
t _{SU} ; t _{DAT}	Data setup time	Fast mode	100			ns	
	Data hald time	Standard mode	0		3.45		
t _{HD} ; t _{DAT}	Data hold time	Fast mode	0		0.9	μs	
	Disa tima of COL sizzal	Standard mode	20 + 0.1C _B		1000		
t _{RCL}	Rise time of SCL signal	Fast mode	20 + 0.1C _B		300	ns	
	Rise time of SCL signal after a repeated START condition	Standard mode	20 + 0.1C _B		1000	20	
t _{RCL1}	and after an acknowledge bit	Fast mode	20 + 0.1C _B		1000	ns	
		Standard mode	20 + 0.1C _B		300	20	
t _{FCL}	Fall time of SCL signal	Fast mode	20 + 0.1C _B		300	ns	
	Disa time of CDA signal	Standard mode	20 + 0.1C _B		1000	20	
t _{RDA}	Rise time of SDA signal	Fast mode	20 + 0.1C _B		300	ns	
t _{FDA}	Fall time of SDA signal	Standard mode	20 + 0.1C _B		300	20	
	Fall time of SDA signal	Fast mode	20 + 0.1C _B		300	ns	
+	Sotup time for STOP condition	Standard mode	4.0			μs	
t _{SU} ; t _{STO}	Setup time for STOP condition	Fast mode	600			ns	
C _B	Capacitive load for SDA and SCL				400	pF	

(1) Assured by design. Not tested in production.

DEVICE INFORMATION

I²C TIMING DIAGRAMS

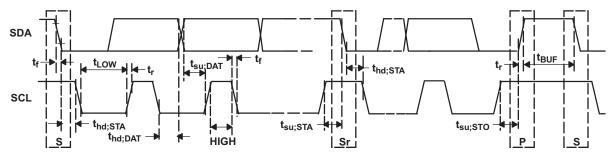
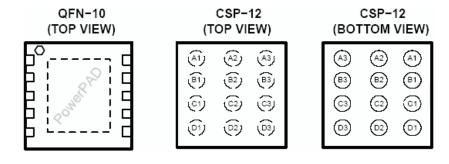
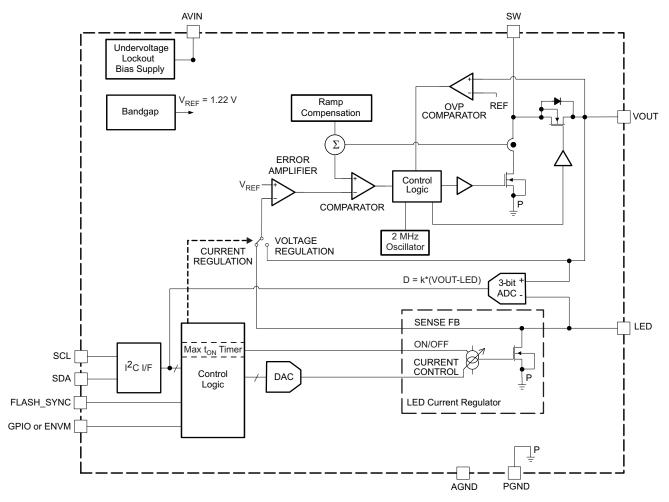



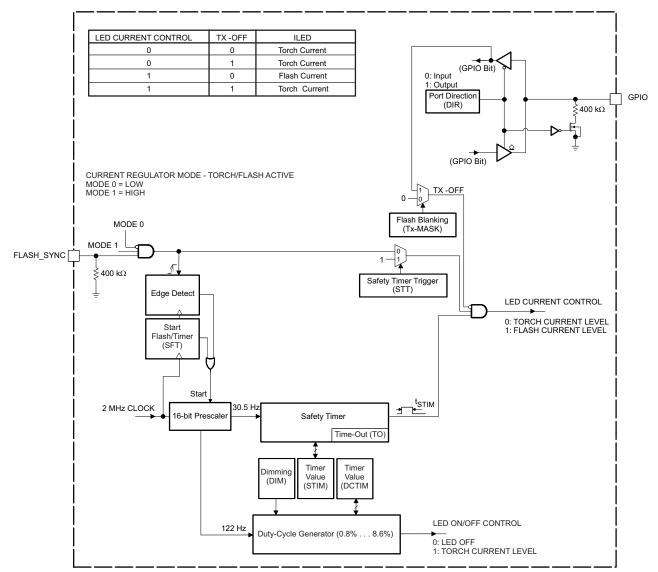
Figure 3. Serial Interface Timing for F/S-Mode

PIN ASSIGMENTS

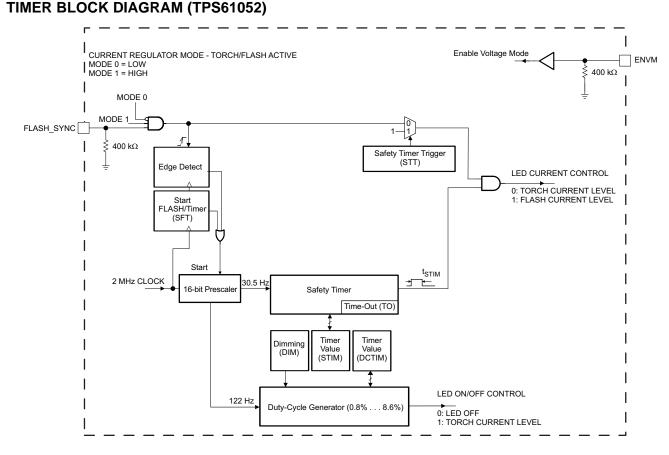
TERMINAL FUNCTIONS


TERMINAL					
NAME	NO. (QFN)	NO. (CSP)	I/O	DESCRIPTION	
AVIN	5	D3	Ι	This is the input voltage pin of the device. Connect directly to the input bypass capacitor.	
VOUT	9	A2	0	Boost converter output.	
LED	6	D2	I	LED return input. This feedback pin regulates the LED current through the internal sense resistor by regulating the voltage across it. The regulation operates with typically 250 mV dropout voltage. Connect to the cathode of the LED.	
FLASH_SYNC	10	A1	I	Flash strobe pulse synchronization input.	
				FLASH_SYNC = LOW (GND): The device is operating and regulating the LED current to the torch current level (TC).	
				FLASH_SYNC = HIGH (VIN): The device is operating and regulating the LED current to the flash current level (FC).	
SCL	2	B3	I	Serial interface clock line. This pin must not be left floating and must be terminated.	
SDA	1	A3	I/O	Serial interface address/data line. This pin must not be left floating and must be terminated.	
GPIO	3	C3	I/O	General purpose input/output (refer to REGISTER2). This pin can either be configured as a logic input or as an open-drain output (TPS61050).	
ENVM	3	C3	Ι	Enable pin for voltage mode boost converter (TPS61052).	
SW	8	B1, B2	I/O	Inductor connection. Drain of the internal power MOSFET. Connect to the switched side of the inductor. SW is high impedance during shutdown.	
PGND	7	C1, C2		Power ground. Connect to AGND underneath IC.	
AGND	4	D1		Analog ground.	
PowerPAD™		N/A		Internally connected to PGND.	

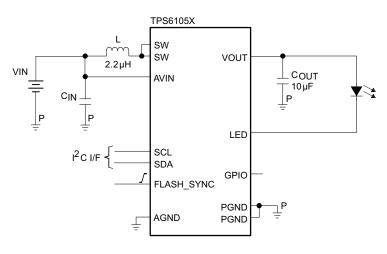
TPS61050 TPS61052


SLUS525-MARCH 2007

FUNCTIONAL BLOCK DIAGRAM



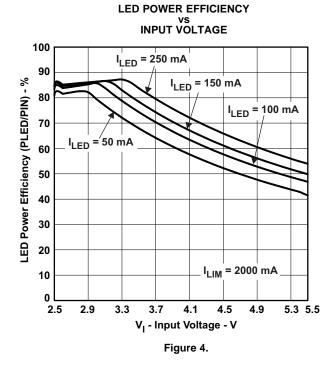
TIMER BLOCK DIAGRAM (TPS61050)

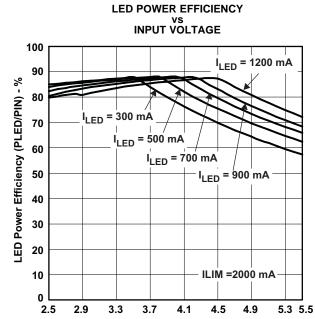


TPS61050 TPS61052 TEXAS INSTRUMENTS www.ti.com

SLUS525-MARCH 2007

PARAMETER MEASUREMENT INFORMATION

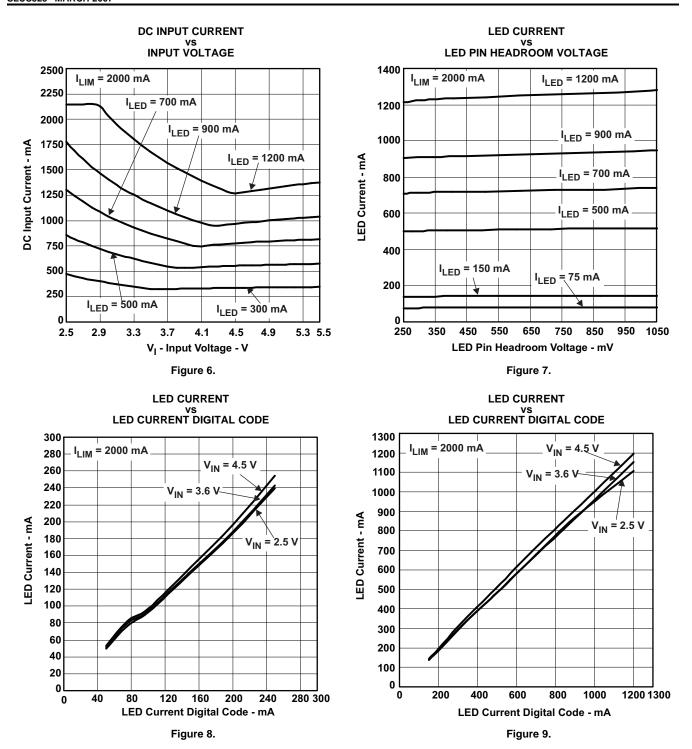

List Of Components:


- L = Wuerth Elektronik WE-PD S Series
- C_{IN} = C_{OUT} = TDK C1605X5R0J106MT

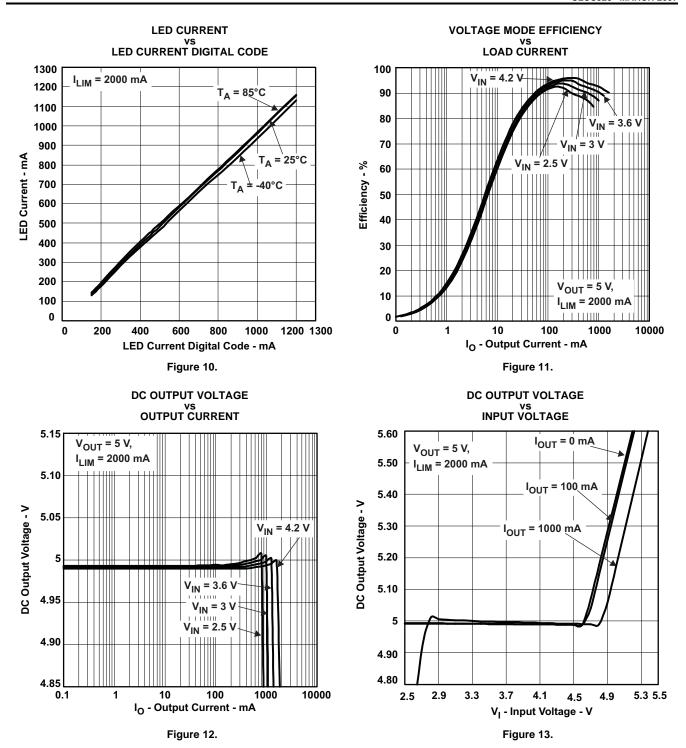
TYPICAL CHARACTERISTICS

Table 1. Table of Graphs

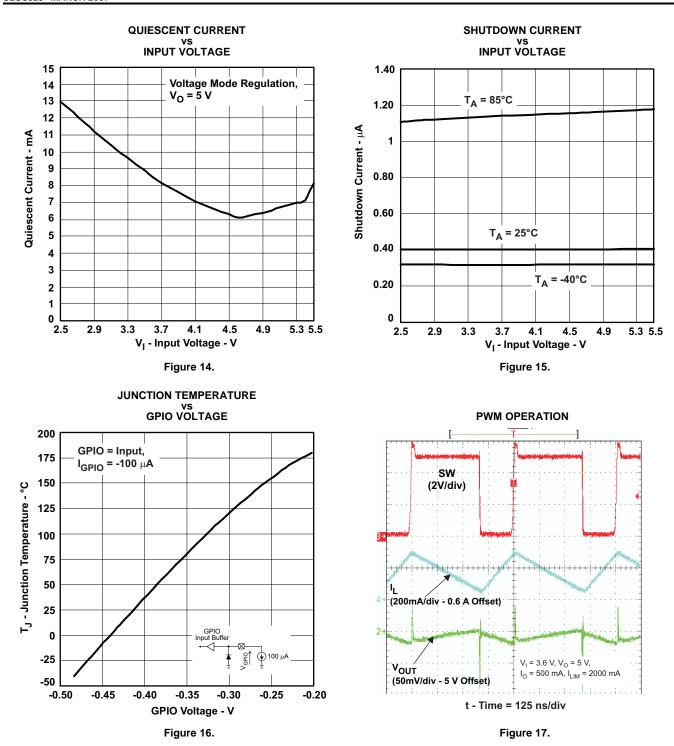
		FIGURE		
LED Power Efficiency	vs. Input Voltage	Figure 4, Figure 5		
DC Input Current	vs. Input Voltage	Figure 6		
LED Current	vs. LED Pin Headroom Voltage	Figure 7		
LED Current	vs. LED Current Digital Code	Figure 8, Figure 9, Figure 10		
Voltage Mode Efficiency	vs. Output Current	Figure 11		
DC Output Voltage	vs. Load Current	Figure 12		
DC Output Voltage	vs. Input Voltage	Figure 13		
Quiescent Current	vs. Input Voltage	Figure 14		
Shutdown Current	vs. Input Voltage	Figure 15		
Junction Temperature	vs. GPIO Voltage	Figure 16		
PWM Operation		Figure 17		
Down-Mode Operation		Figure 18		
Voltage Mode Load Transient Respon	se	Figure 19		
Down-Mode Line Transient Response		Figure 20		
Duty Cycle Jitter		Figure 21		
Input Ripple Voltage		Figure 22		
Low-Light Dimming Mode Operation		Figure 23		
Torch/Flash Sequence		Figure 24		
TX-Masking Operation		Figure 25, Figure 26, Figure 27		
Junction Temperature Monitoring		Figure 28		
Start-up Into Torch Operation		Figure 29, Figure 30		



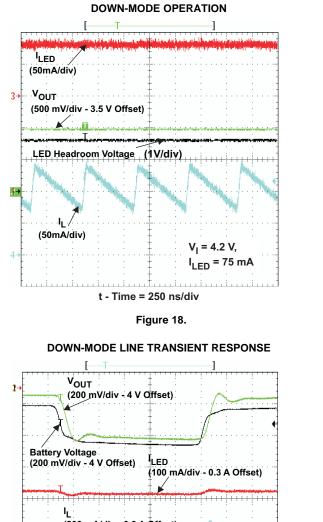
V_I - Input Voltage - V


Figure 5.

TPS61050 TPS61052 SLUS525-MARCH 2007



TEXAS INSTRUMENTS www.ti.com



TPS61050 TPS61052 SLUS525-MARCH 2007

Submit Documentation Feedback

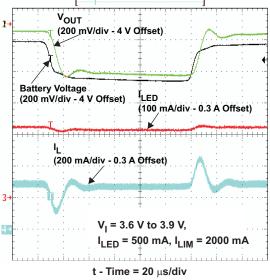
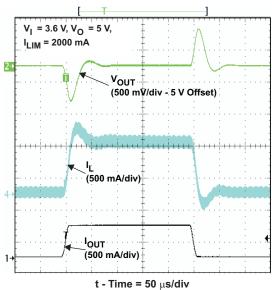



Figure 20.

DUTY CYCLE JITTER

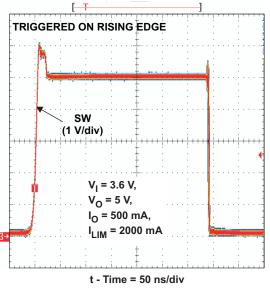


Figure 21.

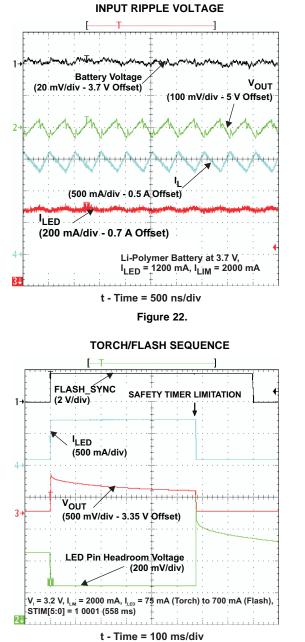


Figure 24.

LOW-LIGHT DIMMING MODE OPERATION

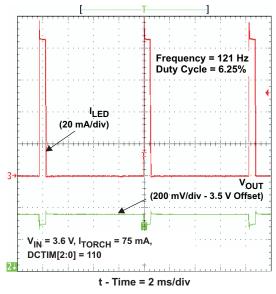


Figure 23.

TX-MASKING OPERATION

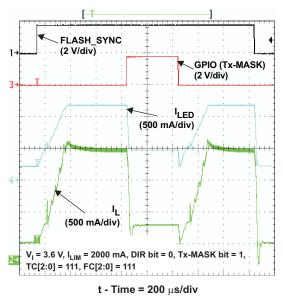
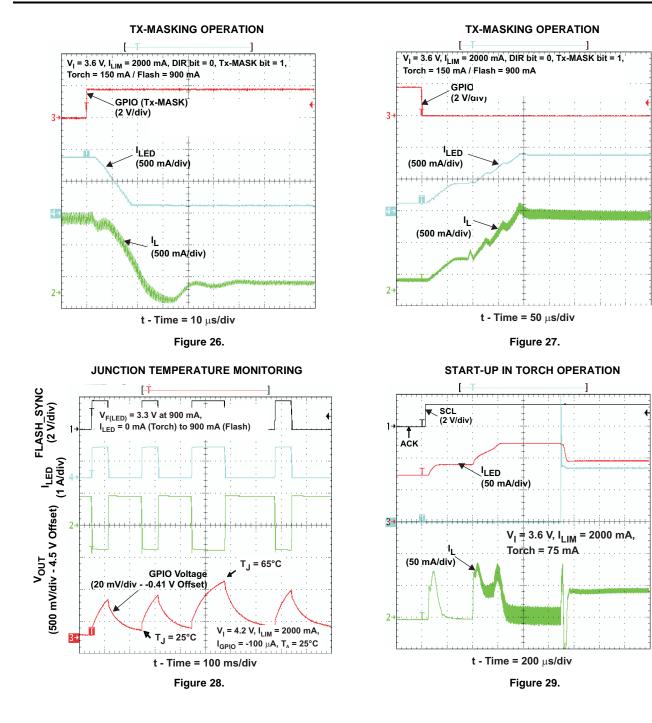



Figure 25.

Submit Documentation Feedback

Submit Documentation Feedback

START-UP IN TORCH OPERATION

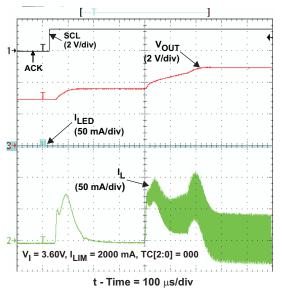


Figure 30.

DETAILED DESCRIPTION

OPERATION

The TPS6105x family employs a 2-MHz constant-frequency, current-mode PWM converter to generate the output voltage required to drive high-power LEDs. The device integrates a power stage based on an NMOS switch and a synchronous NMOS rectifier. The device also implements a linear low-side current regulator to control the LED current when the battery voltage is higher than the diode forward voltage.

In boost mode, the duty cycle of the converter is set by the error amplifier and the saw-tooth ramp applied to the comparator. Because the control architecture is based on a current-mode control, a compensation ramp is added to allow stable operation at duty cycles larger than 50%. The converter is a fully-integrated synchronous-boost converter, always operating in continuous-conduction mode. This allows low-noise operation, and avoids ringing on the switch pin, which would be seen on a converter when entering discontinuous-conduction mode.

The TPS6105x device not only operates as a regulated current source but also as a standard voltage-boost regulator. In the TPS61052 device, the voltage-mode operation can be activated either by a software command or by means of a hardware signal (ENVM). This additional operating mode can be useful to properly synchronize the converter when supplying other high-power devices in the system, such as a hands-free audio power amplifier, or any other component requiring a supply voltage higher than the battery voltage.

The TPS6105x integrates an I²C-compatible interface, allowing transfers up to 400 kbps. This communication interface can be used to

- set the operating mode (shutdown, constant output current mode vs. constant output voltage mode),
- control the brightness of the external LED (torch and flash modes),
- adjust the output voltage (4.5/5/5.25 V) or to program the safety timer.

For more details, refer to the I²C *Register Description* section.

The torch and flash functions can be controlled by the I²C interface. To simplify flash synchronization with the camera module, the device offers a FLASH_SYNC strobe input pin to switch (with zero latency) the LED current from flash to torch light. The maximum duration of the flash pulse can be limited by means of an internal user-programmable safety timer (STIM).

EFFICIENCY

The sense voltage has a direct effect on the converter's efficiency. Because the voltage across the low-side current regulator does not contribute to the output power (LED brightness), the lower the sense voltage, the higher the efficiency will be.

When running in boost mode ($V_{F(LED)} > V_{IN}$), the voltage present at the LED pin of the low-side current regulator is typically 250 mV, which contributes to high power-conversion efficiency.

When running in the linear down-ocnverter mode ($V_{F(LED)} < V_{IN}$), the low-side current regulator drops the voltage difference between the input voltage and the LED forward voltage. Depending on the input voltage and the LED forward voltage characteristic, the converter displays efficiency of approximately 80% to 90%.

SOFT-START

Since the output capacitor always remains biased to the input voltage, the TPS6105x can immediately start switching once it has been enabled via the I²C-compatible interface (refer to MODE_CTRL[1:0] bits). The device starts-up by smoothly ramping up it's internal reference voltage, thus limiting the inrush current.

SHUTDOWN

The MODE_CTRL[1:0] bits are low, the device is forced into shutdown. Depending on the setting of OV[1:0] the device can enter different shutdown modes. In shutdown mode, the regulator stops switching and the LED pin is high impedance thus eliminating any DC conduction path.

If $OV[1:0] \neq 11$, the internal switch and rectifier MOSFET are turned off. VOUT is one body-diode drop below the input voltage and the device consumes only a shutdown current of 0.3 μ A (typ). The output capacitor remains biased to the input voltage.

If OV[1:0] = 11, the internal switch MOSFET is turned off and the rectifier MOSFET is turned on. In this shutdown mode there is almost no dropout voltage between the converter's input and output. The shutdown current is 150 μ A (typ).

LED FAILURE MODES

If the LED fails as a short circuit, the low-side current regulator limits the maximum output current and the LED FAILURE (LF) flag will be set.

If the LED fails as an open circuit, the control loop initially attempts to regulate off of its low-side current regulator feedback signal. This drives VOUT higher. Because the open-circuited LED will never accept its programmed current, VOUT must be voltage-limited by means of a secondary control loop. In this failure mode, the TPS6105x limits VOUT to 6.0 V (typ.) and sets the LED FAILURE (LF) flag.

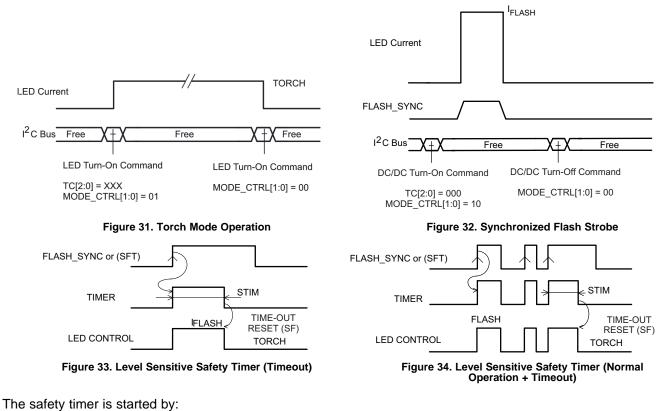
UNDERVOLTAGE LOCKOUT

The undervoltage lockout circuit prevents the device from misoperation at low input voltages. It prevents the converter from turning on the switch or rectifier MOSFET under undefined conditions.

THERMAL SHUTDOWN

As soon as the junction temperature, T_J , exceeds 160°C typical, the device goes into thermal shutdown. In this mode, the *boost* power stage and the low-side current regulator are turned off, the MODE_CTRL[1:0] bits are reset, the OVERTEMP bit is set and can only be reset by a readout.

OPERATING MODES: TORCH AND FLASH


The device operation is more easily understood by referring to the timer block diagram. Depending on the settings of MODE_CTRL[1:0] bits the device can enter 4 different operating modes:

- MODE_CTRL[1:0] = 00: The device is in shutdown mode.
- MODE_CTRL[1:0] = 01: The device is regulating the LED current to the torch current level (TC bits) regardless of the FLASH_SYNC input and START_FLASH/TIMER (SFT) bit. The safety timer is disabled in this operating mode.
- MODE_CTRL[1:0] = 11: The device is regulating a constant output voltage according to OV[1:0] bits settings. The low-side LED current regulator is disabled and the LED is disconnected from the output. In this operating mode, the safety timer is disabled and the general purpose timer (DCTIM) can be used to generate a software timeout (TO) flag. DCTIM start is triggered on the rising edge of START_FLASH/TIMER (SFT).
- MODE_CTRL[1:0] = 10: The flash pulse can be either trigger by a hardware signal (FLASH_SYNC) or by a software bit (SFT).

Flash strobe is level sensitive (STT = 0): LED strobe pulse follows FLASH_SYNC

- FLASH_SYNC and (SFT) = 0: LED operation is set to the torch current level and the safety timer is disabled.
- FLASH_SYNC or (SFT) = 1: The LED is driven at the flash current level and the safety timer is running.

The maximum duration of the flash pulse is defined in the STIM register.

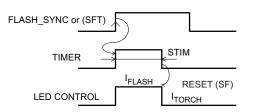
a rising edge of FLASH_SYNC signal.

a rising edge of START FLASH/TIMER (SFT) bit.

The safety timer is stopped by:

- a low level of FLASH_SYNC signal or START_FLASH/TIMER (SFT) bit.
- a timeout signal (TO).

The START-FLASH/TIMER (SFT) bit is reset by the timeout (TO) signal.


The Flash strobe is edge sensitive (STT = 1): The LED strobe pulse is triggered by a rising edge

When FLASH_SYNC and START_FLASH/TIMER (SFT) are both low, the LED operation is set to the torch current level without timeout.

The duration of the flash pulse is defined in the STIM register. The flash strobe is started by:

- a rising edge of FLASH_SYNC signal.
- a rising edge of START_FLASH/TIMER (SFT) bit.

Once running, the timer ignores any triggering signal, and only stops after a timeout (TO). The START-FLASH/TIMER (SFT) bit is reset by the timeout (TO) signal.

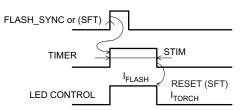


Figure 35. Edge Sensitive Timer (Single Trigger Event)

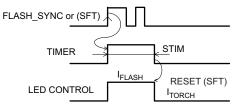


Figure 37. Edge Sensitive Timer (Multiple Trigger Events)

MODE OF OPERATION: FLASH BLANKING (TPS61050)

The TPS61050 device also integrates a general purpose I/O pin (GPIO) that can be configured either as a standard logic input/output or as a flash masking input (Tx-MASK). This blanking function turns the LED from flash to torch light, thereby reducing almost instantaneously the peak current loading from the battery. The Tx-MASK function has no influence on the safety timer duration.

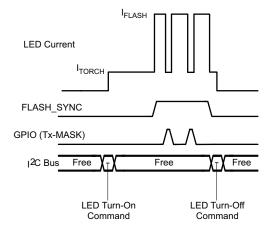


Figure 38. Synchronized Flash With Blanking Periods

HARDWARE VOLTAGE MODE SELECTION (TPS61052)

The TPS61052 device integrates a logic input (ENVM) that can be used to force the converter to run in voltage mode regulation. This additional operating mode can be useful to supply other high power consumption devices in the system (e.g. hands-free audio power amplifier...) or any other component requiring a supply voltage higher than the battery voltage.

Table 2 gives an overview of the different mode of operation of TPS61052.

INTERNAL REGISTER SETTINGS MODE_CTRL[1:0]	ENVM	OPERATING MODES
00	0	Power stage is in shutdown. The output is either connected directly to the battery (OV[1:0]=11, rectifier is bypassed) or via the rectifer's body diode (OV[1:0]=01). In both case the power stage LC filter is connected in series between the battery and the output.
01	0	LED is turned-on for DC light operation. The converter is operating in the current regulation mode (CM). The output voltage is controlled by the forward voltage characteristic of the LED.
10	0	LED is turned-on for flash operation. The converter is operating in the current regulation mode (CM). The output voltage is controlled by the forward voltage characteristic of the LED.
11	0	LED is turned-off and the converter is operating in the voltage regulation mode (VM). The output voltage is set via the register OV[1:0].
00	1	LED is turned-off and the converter is operating in the voltage regulation mode (VM). The output voltage is set via the register OV[1:0].
01	1	The converter is operating in the voltage regulation mode (VM) and it's output voltage is set via the register OV[1:0]. The LED is turned-on for torch operation according to the register TC[2:0]. The LED current is regulated by the means of the low-side current sink.
10	1	The converter is operating in the voltage regulation mode (VM) and it's output voltage is set via the register OV[1:0]. The LED is turned-on for flash operation according to the register FC[2:0]. The LED current is regulated by the means of the low-side current sink.
11	1	LED is turned-off and the converter is operating in the voltage regulation mode (VM). The output voltage is set via the register OV[1:0].

Table 2. TPS61052 Operating Modes

LOW LIGHT DIMMING MODE

The TPS6105x device features white LED drive capability at very low light intensity. To generate a reduced LED average current, the device employs a 122 Hz fixed frequency PWM modulation scheme. Operation is understood best by referring to the timer block diagram.

The torch current is modulated with a duty cycle defined by the DCTIM[2:0] bits. The low light dimming mode can only be activated in the torch only mode, $MODE_CTRL[1:0] = 01$.

PWM Dimming Steps (DCTIM) 0.8%, 1.6%, 2.3%, 3.1%, 3.9%, 4.7%, 6.3%, 8.6%

Torch Current Steps (TC) 50mA, 75mA, 100mA, 150mA, 200mA, 250mA

 $I_{LED(DC)} = I_{TORCH} \times DCTIM$

Figure 39. PWM Dimming Principle

TPS61050 TPS61052 SLUS525-MARCH 2007

White LED blinking can be achieved by turning on/off periodically the LED dimmer via the (DIM) bit, see Figure 40.

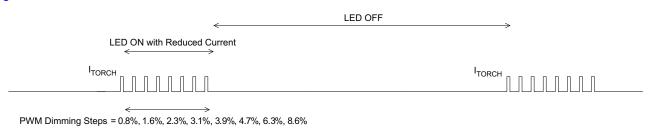


Figure 40. White LED Blinking Control

3-BIT ADC

The TPS6105x device integrates a 3 bit A/D converter to measure the differential voltage across the output and the low-side current regulator. In order to get a proper settling of the LED forward voltage, the data acquisition is done approximately 10 ms after the start of the flash sequence.

When running in the linear down-mode ($V_{F(LED)} < V_{IN}$), the low-side current regulator drops the voltage difference between the input voltage and the LED forward voltage. This may result in thermal limitations (especially for CSP-12 packaging) when running high LED current under high battery conditions ($V_{IN} \ge 4.5$ V) with low forward voltage LEDs and/or high ambient temperature.

The LED forward voltage measurement can be started either by a START FLASH event (FLASH_SYNC or SFT bit) or by setting ADC[2:0] bits (whilst MODE_CTRL[1:0]=01 or 10).

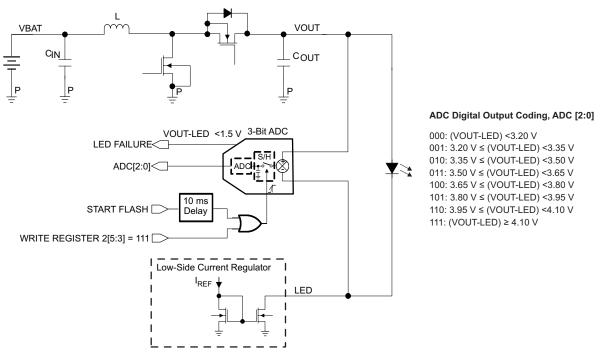


Figure 41. LED VF Measurement Principle

SERIAL INTERFACE DESCRIPTION

I²C is a 2-wire serial interface developed by Philips Semiconductor (see I²C-Bus Specification, Version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is *idle*, both SDA and SCL lines are pulled high. All the I²C compatible devices connect to the I²C bus through open drain I/O pins, SDA and SCL. A *master* device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A *slave* device receives and/or transmits data on the bus under control of the master device.

The TPS6105x device works as a *slave* and supports the following data transfer *modes*, as defined in the I²C-Bus Specification: standard mode (100 kbps) and fast mode (400 kbps). The interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. Register contents remain intact as long as the supply voltage remains above approximately 2 V.

The data transfer protocol for standard and fast modes is exactly the same, therefore they are referred to as F/S-mode in this document. The TPS6105x device supports 7-bit addressing; 10-bit addressing and general call address are not supported. The device 7-bit address is defined as 011 0011.

F/S-MODE PROTOCOL

The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 42 All I²C-compatible devices should recognize a start condition.

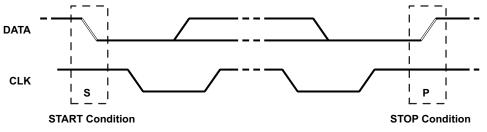
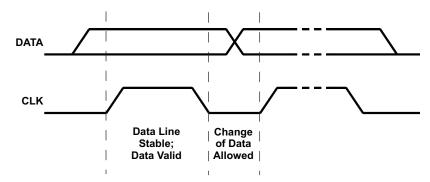
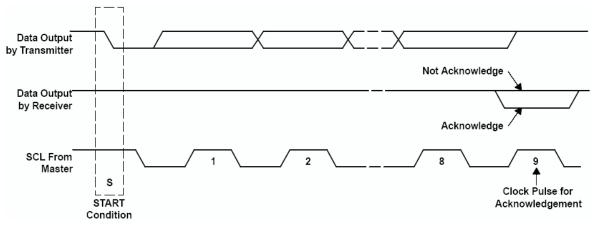
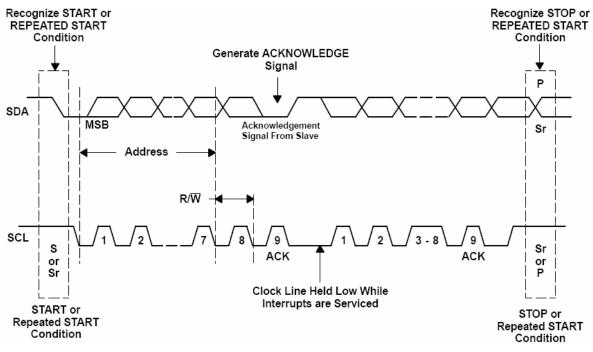


Figure 42. START and STOP Conditions

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 43). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see Figure 44) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

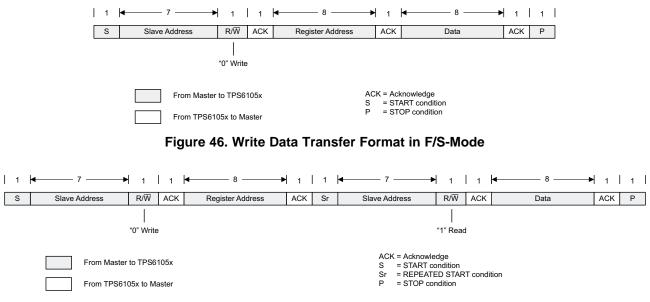



Figure 43. Bit Transfer on the Serial Interface


The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary.

To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see Figure 42). This releases the bus and stops the communication link with the addressed slave. All I²C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address.

Attempting to read data from register addresses not listed in this section will result in 00h being read out.



TPS6105X I2C UPDATE SEQUENCE

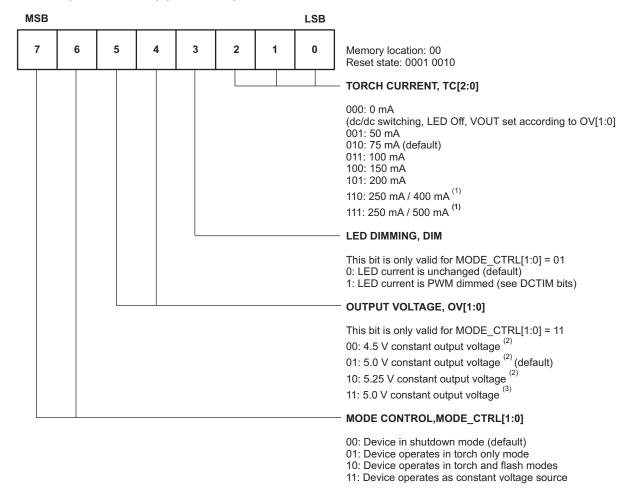
The TPS6105x requires a start condition, a valid I²C address, a register address byte, and a data byte for a single update. After the receipt of each byte, TPS6105x device acknowledges by pulling the SDA line low during the high period of a single clock pulse. A valid I²C address selects the TPS6105x. TPS6105x performs an update on the rising edge of the SCL clock that follows the ACK bit transmission.

Figure 47. Read Data Transfer Format in F/S-Mode

SLAVE ADDRESS BYTE

MSB							LSB
Х	0	1	1	0	0	1	1

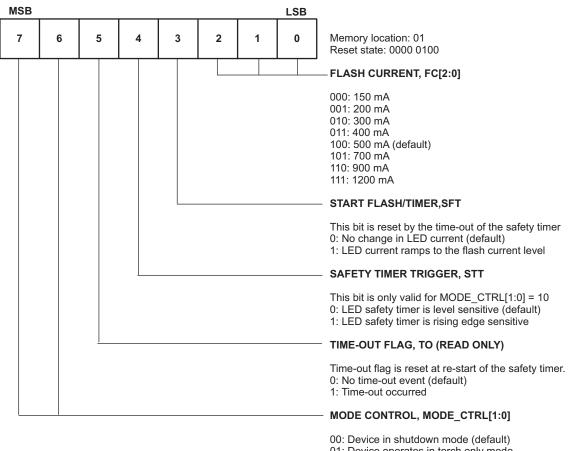
The slave address byte is the first byte received following the START condition from the master device. **REGISTER ADDRESS BYTE**


MSB							LSB	1
0	0	0	0	0	0	D1	D0	

Following the successful acknowledgement of the slave address, the bus master will send a byte to the TPS6105x, which will contain the address of the register to be accessed. The TPS6105x contains four 8-bit registers accessible via a bidirectional I2C-bus interface. All internal registers have read and write access.

TEXAS INSTRUMENTS www.ti.com

REGISTER DESCRIPTION

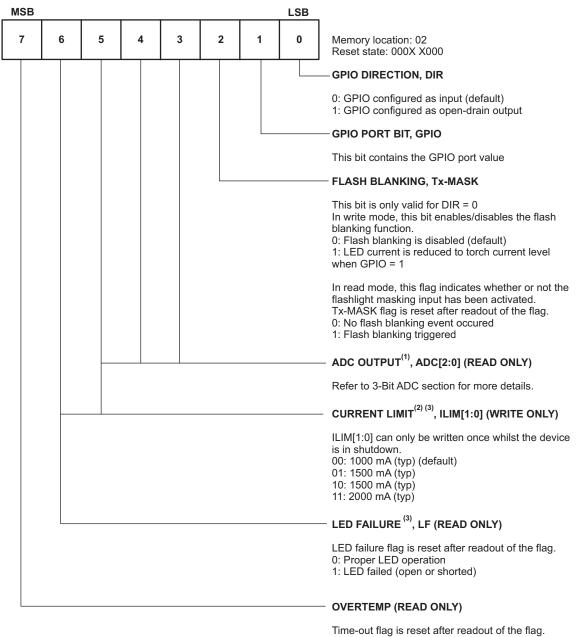

REGISTER0 (READ/WRITE) (TPS6105X)

Writing to REGISTERS[7:6] automatically updates REGISTER[7:6].

- (1) 400 mA/500 mA current level can only be activated when DIR = 0, Tx-MASK = 1 and GPIO input is set high. This operating mode only applies to TPS61050.
- (2) MODE_CTRL[1:0] = 00, VOUT is one body diode below the input voltage, $I_Q = 0.3\mu A$ (typ).
- (3) MODE_CTRL[1:0] = 00, rectifier MOSFET is turned on shorting VOUT and SW, $I_Q = 150\mu A$ (typ).

REGISTER1 (READ/WRITE) (TPS6105X)

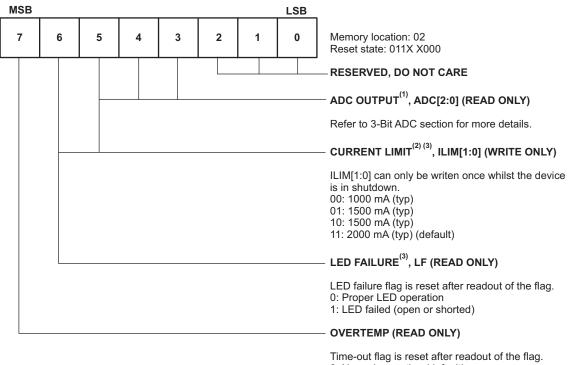
01: Device operates in torch only mode


10: Device operates in torch and flash modes

11: Device operates as constant voltage source

Writing to REGISTER1[7:6] automatically updates REGISTER0[7:6]

TEXAS INSTRUMENTS www.ti.com


REGISTER2 (READ/WRITE) (TPS61050)

0: Normal operation (default) 1: Thermal shutdown tripped

- (1) Setting bits 3, 4 and 5 (whilst MODE_CTRL[1:0]=01 or 10) starts an LED forward voltage measurement.
- (2) A write operation on bit 5 and 6 points to the ILIM[1:0] bits.
- (3) A read operation on bit 5 and 6 points to the LF and ADC[2] bits.

REGISTER2 (READ/WRITE) (TPS61052)

- 0: Normal operation (default)
- 1: Thermal shutdown tripped
- (1) Setting bits 3, 4 and 5 (whilst MODE_CTRL[1:0]=01 or 10) starts an LED forward voltage measurement.
- (2) A write operation on bit 5 and 6 points to the ILIM[1:0] bits.
- (3) A read operation on bit 5 and 6 points to the LF and ADC[2] bits.

REGISTER3 (READ/WRITE) (TPS6105X)

MSB							LSB	
7	6	5	4	3	2	1	0	Memory location: 03 Reset state: 1101 0001
						•		— SAFETY TIMER, STIM[4:0]
								5-bit unsigned binary coding. STIM can only be Written once before the device has entered the flashlight mode. Timer = STIM x32.8 ms, default is 557.6 ms
								- GENERAL PURPOSE TIMER, DCTIM[2:0]

If MODE_CTRL = 01 and DIM = 1, DCTIM sets the average LED current

000: 0.8% x ITORCH 001: 1.6% x ITORCH 010: 2.3% x ITORCH 011: 3.1% x ITORCH 100: 3.9% x ITORCH 101: 4.7% x ITORCH 110: 6.3% x ITORCH (default) 111: 8.6% x ITORCH

If MODE_CTRL = 11, DCTIM sets the duration of the timer till TO bit is set

3-bit unsigned binary coding Timer = DCTIM x 1.02 s

APPLICATION INFORMATION

INDUCTOR SELECTON

A boost converter requires two main passive components for storing energy during the conversion. A boost inductor and a storage capacitor at the output are required. The TPS6105x device integrates a current limit protection circuitry. The peak current of the NMOS switch is sensed to limit the maximum current flowing through the switch and the inductor. The typical peak current limit (1000 mA / 1500 mA / 2000 mA) is user selectable via the I²C interface.

In order to optimize solution size the TPS6105x device has been designed to operate with inductance values between a minimum of 1.3 μ H and maximum of 2.9 μ H. In typical high-current white LED applications a 2.2 μ H inductance is recommended.

To select the boost inductor, it is recommended to keep the possible peak inductor current below the current limit threshold of the power switch in the chosen configuration. The highest peak current through the inductor and the power switch depends on the output load, the input and output voltages. Estimation of the maximum average inductor current and the maximum inductor peak current can be done using Equation 1 and Equation 2:

$$I_{L} \approx I_{OUT} = \frac{V_{OUT}}{\eta \times V_{IN}}$$
(1)

$$I_{L(PEAK)} = \frac{V_{IN} \times D}{2 \times f \times L} + \frac{I_{OUT}}{(1 - D) \times \eta} \text{ with } D = \frac{V_{OUT} - V_{IN}}{V_{OUT}}$$
(2)

with:

f = switching frequency (2 MHz)

L = inductance value (2.2 μ H)

 η = estimated efficiency (85%)

For example, for an output current of 500 mA at 5 V, the TPS6105x device needs to be set for a 1000 mA current limit operation together with an inductor supporting this peak current.

The losses in the inductor caused by magnetic hysteresis losses and copper losses are a major parameter for total circuit efficiency.

MANUFACTURER	SERIES	DIMENSIONS	ILIM SETTINGS	
TDK	VLF3010AT	2,6 mm \times 2,8 mm \times 1,0 mm max. height	1000 m A (typ)	
TAIYO YUDEN	NR3010	3,0 mm \times 3,0 mm \times 1,0 mm max. height	1000 mA (typ.)	
TDK	VLF3014AT	2,6 mm \times 2,8 mm \times 1,4 mm max. height		
COILCRAFT	LPS3015	3,0 mm \times 3,0 mm \times 1,5 mm max. height	1500 mA (typ.)	
MURATA	LQH3NP	3,0 mm \times 3,0 mm \times 1,5 mm max. height		
ТОКО	FDSE0312	3,0 mm \times 3,0 mm \times 1,2 mm max. height	2000 mA (typ.)	

Table 3. List of Inductors

CAPACITOR SELECTION

Input Capacitor

For good input voltage filtering low ESR ceramic capacitors are recommended. A $10-\mu$ F input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. The input capacitor should be placed as close as possible to the input pin of the converter.

Output Capacitor

The primary parameter necessary to define the output capacitor is the maximum allowed output voltage ripple of the converter. This ripple is determined by two parameters of the capacitor, the capacitance and the ESR. It is possible to calculate the minimum capacitance needed for the defined ripple, supposing that the ESR is zero, by using Equation 3:

$$\mathbf{C}_{min} \approx \frac{\mathbf{I}_{OUT} \times \left(\mathbf{V}_{OUT} - \mathbf{V}_{IN}\right)}{\mathbf{f} \times \Delta \mathbf{V} \times \mathbf{V}_{OUT}}$$

(3)

Parameter f is the switching frequency and ΔV is the maximum allowed ripple.

With a chosen ripple voltage of 10mV, a minimum capacitance of 10 μ F is needed. The total ripple is larger due to the ESR of the output capacitor. This additional component of the ripple can be calculated using Equation 4:

 $\Delta V_{\rm ESR} = I_{\rm OUT} \times R_{\rm ESR}$

The total ripple is the sum of the ripple caused by the capacitance and the ripple caused by the ESR of the capacitor. Additional ripple is caused by load transients. This means that the output capacitor has to completely supply the load during the charging phase of the inductor. A reasonable value of the output capacitance depends on the speed of the load transients and the load current during the load change.

For the high current white LED application, a minimum of 3 μ F effective output capacitance is usually required when operating with 2.2 μ H (typ) inductors. For solution size reasons, this is usually one or more X5R/X7R ceramic capacitors. For stable operation of the internally compensated control loop, a maximum of 50 μ F effective output capacitance is tolerable.

Depending on the material, size and margin to the rated voltage of the used output capacitor, degradation on the effective capacitance can be observed. This loss of capacitance is related to the DC bias voltage applied. It is therefore always recommended to check that the selected capacitors are showing enough effective capacitance under real operating conditions.

CHECKING LOOP STABILITY

The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:

- Switching node, SW
- Inductor current, I₁
- Output ripple voltage, V_{OUT(AC)}

These are the basic signals that need to be measured when evaluating a switching converter. When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations the regulation loop may be unstable. This is often a result of board layout and/or L-C combination.

The next step in regulation loop evaluation is to perform a load transient test. Output voltage settling time after the load transient event is a good estimate of the control loop bandwidth. The amount of overshoot and subsequent oscillations (ringing) indicates the stability of the control loop. Without any ringing, the loop has usually more than 45° of phase margin.

Because the damping factor of the circuitry is directly related to several resistive parameters (e.g., MOSFET $r_{DS(on)}$) that are temperature dependant, the loop stability analysis has to be done over the input voltage range, output current range, and temperature range.

LAYOUT CONSIDERATIONS

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks.

The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC.

To lay out the control ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current.

THERMAL INFORMATION

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependant issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance are listed below:

- Improving the power dissipation capability of the PCB design
- Improving the thermal coupling of the component to the PCB
- Introducing airflow in the system

Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design. The maximum junction temperature (T_{J}) of the TPS6105x is 150°C.

The maximum power dissipation gets especially critical when the device operates in the linear down mode at high LED current. For single pulse power thermal analysis (e.g., flash strobe), the allowable power dissipation for the device is given by Figure 48.

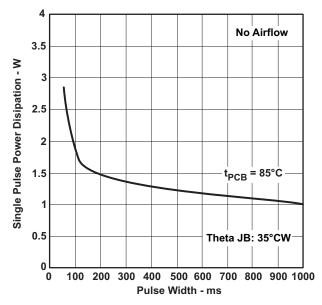


Figure 48. Single Pulse Power Capability (CSP Package)

TYPICAL APPLICATIONS

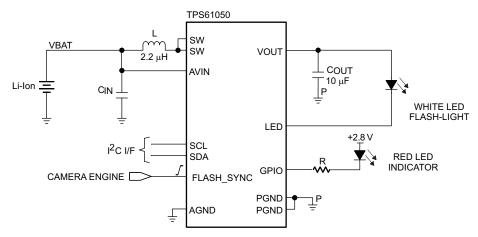


Figure 49. High Power White LED Solution Featuring Privacy Indicator

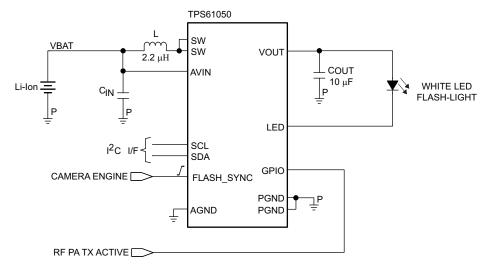


Figure 50. High Power White LED Solution Featuring No-Latency Turn-Down via PA TX Signal

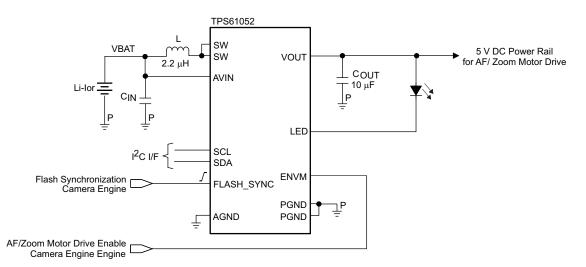


Figure 51. High Power White LED Flash Driver and AF/Zoom Motor Drive Supply

TYPICAL APPLICATIONS (continued)

Figure 52. White LED Flash Driver and Audio Amplifier Power Supply Exclusive Operation

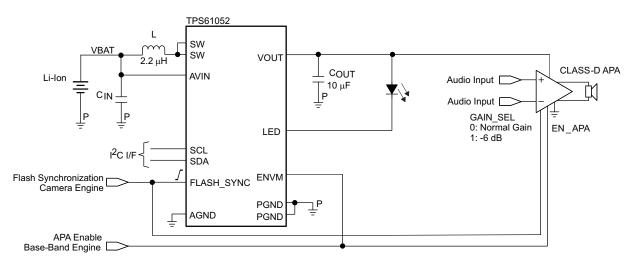
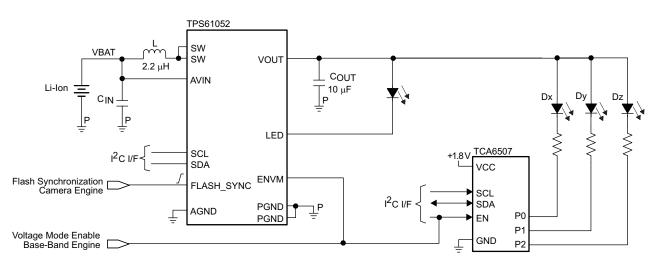



Figure 53. White LED Flash Driver and Audio Amplifier Power Supply Operating Simultaneously

TYPICAL APPLICATIONS (continued)

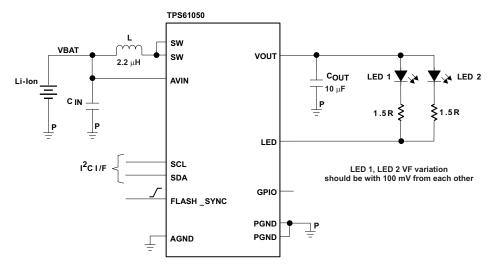


Figure 55. 2 \times 300 mA Dual LED Camera Flash

PACKAGE SUMMARY

- LLLL lot trace code
- S assembly site code

PACKAGE DIMENSIONS

The dimensions for the YZG package are shown in Table 4. See the package drawing at the end of this data sheet.

Packaged Devices	D	E		
TPS6105xYZG	1.96 ±0.05 mm	1.46 ±0.05 mm		

V IEXAS NSTRUMENTS www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS61050DRCR	ACTIVE	SON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61050DRCRG4	ACTIVE	SON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61050DRCT	ACTIVE	SON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61050DRCTG4	ACTIVE	SON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61050YZGR	ACTIVE	DSBGA	YZG	12	3000	Green (RoHS & no Sb/Br)	SnAgCu	Level-1-260C-UNLIM
TPS61050YZGT	ACTIVE	DSBGA	YZG	12	250	Green (RoHS & no Sb/Br)	SnAgCu	Level-1-260C-UNLIM
TPS61052DRCR	ACTIVE	SON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61052DRCRG4	ACTIVE	SON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61052DRCT	ACTIVE	SON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61052DRCTG4	ACTIVE	SON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61052YZGR	ACTIVE	DSBGA	YZG	12	3000	Green (RoHS & no Sb/Br)	SnAgCu	Level-1-260C-UNLIM
TPS61052YZGT	ACTIVE	DSBGA	YZG	12	250	Green (RoHS & no Sb/Br)	SnAgCu	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

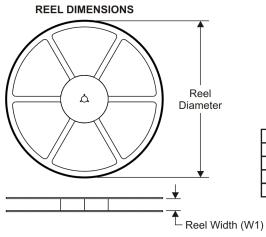
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

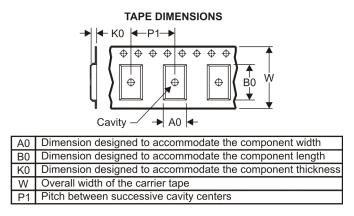
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

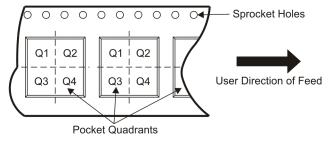
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

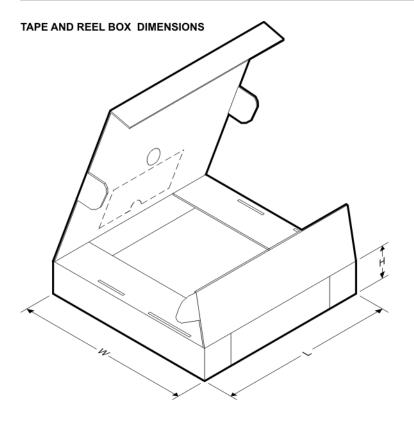


13-Nov-2008

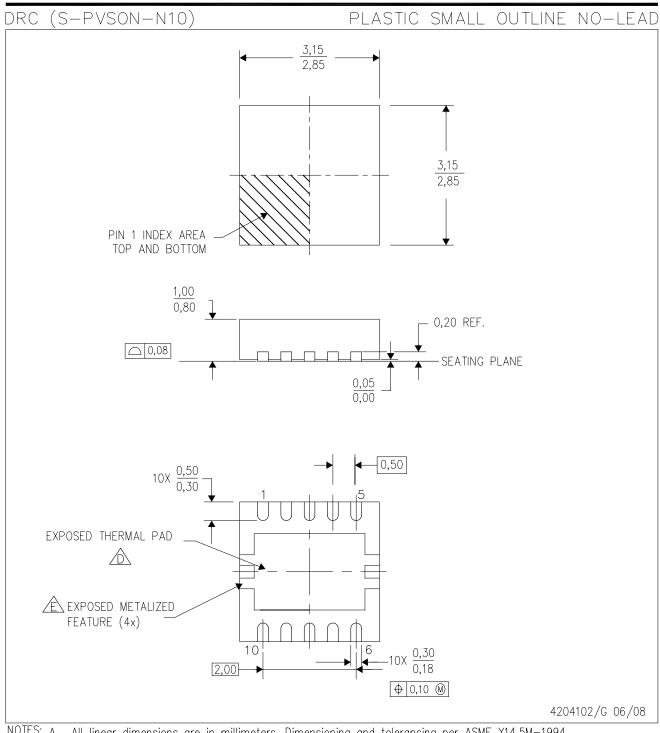

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS61050DRCR	SON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61050DRCT	SON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61050YZGR	DSBGA	YZG	12	3000	178.0	8.4	1.75	2.25	0.81	4.0	8.0	Q1
TPS61050YZGT	DSBGA	YZG	12	250	178.0	8.4	1.75	2.25	0.81	4.0	8.0	Q1
TPS61052DRCR	SON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61052YZGR	DSBGA	YZG	12	3000	178.0	8.4	1.75	2.25	0.81	4.0	8.0	Q1
TPS61052YZGT	DSBGA	YZG	12	250	178.0	8.4	1.75	2.25	0.81	4.0	8.0	Q1


PACKAGE MATERIALS INFORMATION

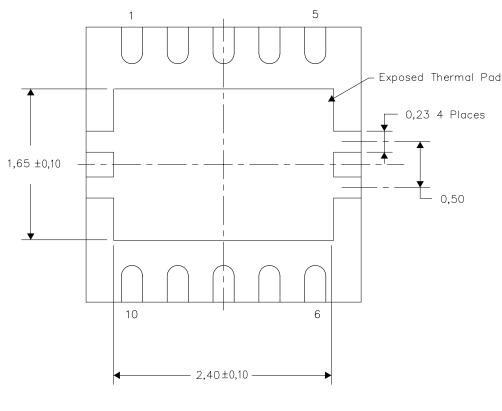
12-Sep-2008

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS61050DRCR	SON	DRC	10	3000	346.0	346.0	29.0
TPS61050DRCT	SON	DRC	10	250	190.5	212.7	31.8
TPS61050YZGR	DSBGA	YZG	12	3000	217.0	193.0	35.0
TPS61050YZGT	DSBGA	YZG	12	250	217.0	193.0	35.0
TPS61052DRCR	SON	DRC	10	3000	346.0	346.0	29.0
TPS61052YZGR	DSBGA	YZG	12	3000	217.0	193.0	35.0
TPS61052YZGT	DSBGA	YZG	12	250	217.0	193.0	35.0

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- Æ. Metalized features are supplier options and may not be on the package.

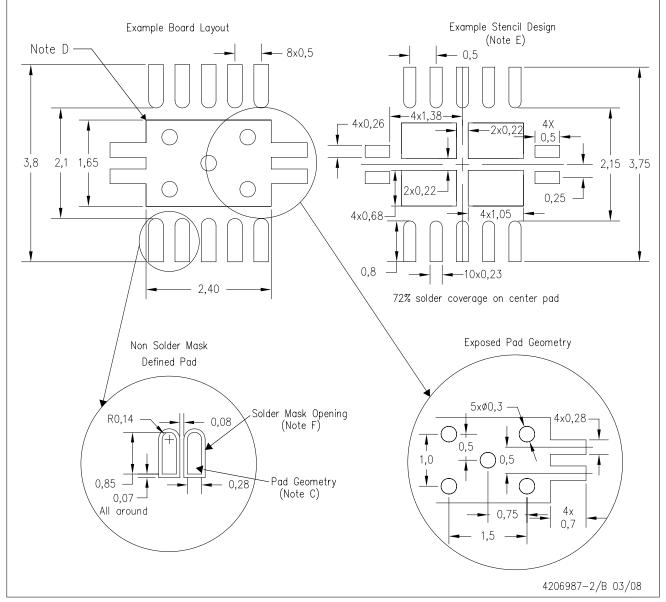


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

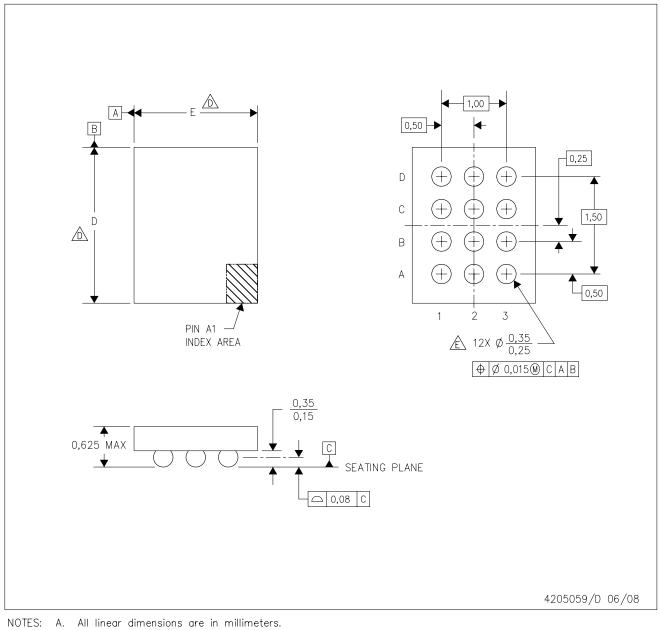


Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DRC (S-PVSON-N10)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

YZG (R-XBGA-N12)

DIE-SIZE BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- Devices in YZG package can have dimension D ranging from 1.94 to 2.65 mm and dimension E ranging from 1.44 to 2.15 mm. To determine the exact package size of a particular device, refer to the device datasheet or contact a local TI representative.
- E. Reference Product Data Sheet for array population. $4\ x\ 3$ matrix pattern is shown for illustration only.
- F. This package contains lead-free balls. Refer to YEG (Drawing #4204182) for tin-lead (SnPb) balls.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated